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Abstract
Developing algorithms for solving high-dimensional uncertain differential equations
has been an exceedingly difficult task. This paper presents an α-path-based approach
that can handle the proposed high-dimensional uncertain SIR model. We apply the α-
path-based approach to calculating the uncertainty distributions and related expected
values of the solutions. Furthermore, we employ the method of moments to estimate
parameters and design a numerical algorithm to solve them. This model is applied
to describing the development trend of COVID-19 using infected and recovered data
of Hubei province. The results indicate that lockdown policy achieves almost 100%
efficiency after February 13, 2020, which is consistent with the existing literatures.
The high-dimensional α-path-based approach opens up new possibilities in solving
high-dimensional uncertain differential equations and new applications.

Keywords Uncertainty theory · Uncertain differential equation · SIR model ·
COVID-19

1 Introduction

The World Health Organization (WHO) defines a pandemic as the worldwide spread
of a new disease. Since December 2019, the COVID-19 causes infection of over 10
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million people and over 500K deaths by Jun 30, 2020. The widespread epidemics have
a profound historical impact on economic and social development, leading directly
to less confidence in economic growth and a sharp drop in investment. The 1918
Spanish flu infected about 500 million people worldwide. The 1957 Asian influenza
pandemic killed at least 1 million people. According toWorld Bank officials, the 1968
Hong Kong flu could cause global GDP to fall by 0.7% in the first year. The 2002
SARS caused a productivity loss of more than 40 billion US dollars. The epidemics
hit trade and services hard. TheWorld Bank estimates that the SARS epidemic caused
54 billion US dollars to the global economy, while the 2009 Influenza A (H1N1)
pandemic caused between 45 and 55 billion US dollars in global losses. Besides the
economic impact, the decline in human capital indirectly affected economic activity
in the decades following the pandemic. In fact, the poor suffered the most significant
impact, which exacerbated social inequality. Besides, the epidemic not only causes
economic depression, but also causes patients and their families to be isolated and
stigmatized, and suffering high psychological stress.

Researchers urgently need to establish mathematical models to predict pandemic
trends and formulate better prevention, control, and rescue policies. Kermack and
McKendrick (1927) build the first susceptible-infected-recovered (SIR) model to
describe the spread of the epidemic. This SIR model has been widely extended to
model different types of outbreaks. Li et al. (2020) add mobility data between cities
into the SIR model to build a networked dynamic metapopulation model to infer crit-
ical epidemiological characteristics associated with COVID-19. Jia et al. (2020) use
mobile-phone-data-based counts of about 11.5 million people egressing or transiting
through the prefecture of Wuhan to build a risk source model to derive the geographic
spread of COVID-19 statistically. Besides deterministic SIR models, stochastic SIR
models are established based on the consideration transmission rate having stochastic
perturbations. Bartlett (1956) formulates the first stochastic extensions of the SIR
model using a stochastic jump process to describe the evolution of an epidemic.
Iwata and Miyakoshi (2020) conduct simulations to estimate the impact of potential
secondary outbreaks in a community outside China using a stochastic SEIR model.
Various other stochastic extensions of the SIR models have been proposed (see, e.g.
Brauer et al. 2019).

The continuous-time SIR (SEIR) or stochastic SIR (SEIR) models are often used
to estimate the whole trend of the epidemic at its outbreaks. In order to deal with
belief degrees, Liu (2007) builds uncertainty theory. Liu (2008) introduces a type of
differential equation driven by Liu process concernedwith the analysis of belief degree
in a system. Yao and Chen (2013a) establish the numerical solutions for uncertain
differential equations using the α-path methods. Li et al. (2017) build an uncertain
SIS models via uncertain differential equations. Fang et al. (2018) discuss α-path
of uncertain SIS epidemic model with standard incidence and demography. Li et al.
(2018) compare the deterministic, stochastic, and uncertain SIS models. Furthermore,
Li and Teng (2019) analyze an uncertain SIS epidemicmodel with nonlinear incidence
and demography. Uncertain SIS model is a type of mathematical model to describe an
epidemic like flu. For a new virus like COVID-19, SARS or H1N1, it lasts only for
a short period and the recovered cases immune to the virus. Through this COVID-19
pandemic, we can see that the numbers of infected and recovered in the population are
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crucial to the development of the outbreak control. From the news, we know it is tough
to attain accurate numbers of infected and recovered cases. The survey sponsored by
Stanford University (Bendavid et al. 2020) shows the infection may be much more
widespread than indicated by the number of confirmed cases. The study by Imperial
College London (Unwin et al. 2020) finds hundreds of thousands more Massachusetts
residents likely contracted COVID-19 than reported. Centers for Disease Control and
Prevention (CDC) chief said COVID-19 cases may be 10 times higher than reported
based on antibody tests on June 25, 2020.

This paper aims to build an uncertain SIR model via high-dimensional uncertain
differential equations. As we know, high-dimensional uncertain differential equations
are more flexible in applications. However, developing algorithms for solving high-
dimensional uncertain differential equations has been an exceedingly difficult task for
a long time. Thus, we establish an α-path-approached method for the proposed SIR
model, estimate parameters using themethod ofmoments, and give numericalmethods
to solve them. Finally, we employ the estimated parameters in the model to study the
COVID-19 in Hubei province, China. The remainder of this paper is organized as
follows. Preliminaries of uncertainty theory are recalled in Sect. 2. An uncertain SIR
model based on high-dimensional uncertain differential equations is built in Sect.
3. Section 4 introduces α-path and proves the theorem for numerical solution, and
Sect. 5 estimates parameters and designs a 99-method to solve the proposed uncertain
differential system. A calibration on uncertain SIR model is discussed in Sect. 6. A
brief summary is included in Sect. 7.

2 Preliminaries

Uncertainty theory is a branch of mathematics based on normality, duality, subaddi-
tivity, and product axioms. It is founded by Liu (2007) to deal with belief degrees. The
core concept in uncertainty theory is uncertain measure. The definition of uncertain
measure is recalled as follows.

Definition 1 (Liu (2007)) Let L be a σ -algebra on a nonempty set Γ . A set function
M : L → [0, 1] is called an uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality Axiom) M{Γ } = 1 for the universal set Γ .

Axiom 2: (Duality Axiom) M{Λ} + M{Λc} = 1 for any event Λ.
Axiom 3: (Subadditivity Axiom) For every countable sequence of eventsΛ1,Λ2, . . . ,

we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M {Λi } .

Besides, the product uncertain measure on the product σ -algebra L is defined by Liu
(2009) bellow.
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Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .
Then the product uncertain measureM is an uncertain measure satisfying

M

{ ∞∏
i=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respec-
tively.

The triplet (Γ ,L,M) is called an uncertainty space. Based on the axioms of uncer-
tain measure, uncertainty theory is founded by Liu (2007) and refined by Liu (2010).
An uncertain variable is a function from an uncertainty space (Γ ,L,M) to the set of
real numbers. The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}

for any real number x . An uncertainty distribution Φ(x) is said to be regular if it is a
continuous and strictly increasing function with respect to x at which 0 < Φ(x) < 1,
and

lim
x→−∞ Φ(x) = 0, lim

x→+∞ Φ(x) = 1.

Definition 2 (Liu (2010)) Let ξ be an uncertain variable with regular uncertainty dis-
tribution Φ(x). Then the inverse function Φ−1(α) is called the inverse uncertainty
distribution of ξ .

Let ξ be an uncertain variable with an uncertainty distributionΦ. If the expected value
exists, then it is proved by Liu (2010) that

E[ξ ] =
∫ 1

0
Φ−1(α)dα.

Theorem 1 (Liu (2010)) Let ξ be an uncertain variable with an uncertainty distribu-
tion Ψ . If f is a strictly increasing function, then η = f (ξ) is an uncertain variable
with an inverse uncertainty distribution

Φ−1(α) = f (Ψ −1(α)).

If f is a strictly decreasing function, then η = f (ξ) is an uncertain variable with an
inverse uncertainty distribution

Φ−1(α) = f (Ψ −1(1 − α)).
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An uncertain process is essentially a sequence of uncertain variables indexed by
time. The study of uncertain process is started by Liu (2008).

Definition 3 (Liu (2008)) Let (Γ ,L,M) be an uncertainty space and let T be a totally
ordered set (e.g. time). An uncertain process is a function Xt (γ ) from T × (Γ ,L,M)

to the set of real numbers such that {Xt ∈ B} is an event for any Borel set B of real
numbers at each time t .

Definition 4 (Liu (2009)) An uncertain process Ct (t ≥ 0) is said to be a Liu process
if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t −Cs is a normal uncertain variable with expected value 0

and variance t2, whose uncertainty distribution is

Φ(x) =
(
1 + exp

(−πx√
3t

))−1

, x ∈ �.

Based on Liu process, uncertain integral and uncertain differential are defined by Liu
(2009), thus offering a theory of uncertain calculus. An uncertain differential equation
driven by Liu process is defined as follows.

Definition 5 (Liu (2008)) Suppose Ct is a Liu process, and f and g are some given
functions. Then

dXt = f (t, Xt )dt + g(t, Xt )dCt (1)

is called an uncertain differential equation. A solution is an uncertain process Xt that
satisfies (1) identically in t .

The existence and uniqueness theorem for uncertain differential equations is proved
by Chen and Liu (2010). Uncertain differential equation theory has been applied in the
fields such as finance, population growth model, dynamic game theory, and optimal
control (Liu 2015). The concept of α-path is introduced by Yao and Chen (2013a).
The solution to an uncertain differential equation is equivalent to a group of α-path
solutions to related ordinary differential equations. Besides, Chen and Gao (2018)
further studied the α-path for nested differential equations. The definition of α-path
is as follows.

Definition 6 (Yao and Chen (2013a)) The α-path (0 < α < 1) of an uncertain differ-
ential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt

is a deterministic function Xα
t with respect to t that solves the corresponding ordinary

differential equation

dXα
t = f (t, Xα

t )dt + |g(t, Xα
t )|Φ−1(α)dt
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where Φ−1(α) is the inverse uncertainty distribution of standard normal uncertain
variable, i.e.,

Φ−1(α) =
√
3

π
ln

α

1 − α
, 0 < α < 1.

The following theorem shows that the solution of an uncertain differential equation is
related to a class of ordinary differential equations.

Theorem 2 (Yao and Chen (2013a)) Let Xt and Xα
t be the solution and α-path of the

uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt ,

respectively. Then

M{Xt ≤ Xα
t , ∀t > 0} = α, (2)

M{Xt > Xα
t , ∀t > 0} = 1 − α. (3)

3 Uncertain SIRmodel

During a pandemic, people who recover will be likely immune to it. The infected and
recovered numbers of cases are essential variables that determine the pandemic trend.
The fact that many cases are initially asymptomatic makes it difficult to ascertain
the exact number of individuals infected with COVID-19. Surveys indicate that the
confirmed infected cased number denoted by It in the whole population is a significant
difference from the actual infected number. Tests found that a considerable amount of
people have already obtained COVID-19 antibodies without any symptoms. The real
number for Rt ismore difficult to estimate because of these asymptomatic infections. In
order to indeterminism in the pandemic, the uncertain differential equation is employed
to build an uncertain SIR model. In our uncertain SIR model, originated by Kermack
andMcKendrick (1927), the population Nt is divided into three categories susceptible
St , infected It , and recovered Rt . We use Liu processes to model diffusion sources
that capture variability in exposures and potential mismeasurement of the numbers of
infected and recovered. The uncertain SIR pandemic model is introduced as follows,

dSt = (a − β It St − μSt ) dt + σS St dC
S
t , (4a)

dIt = (β It St − (λ + ε + μ)It ) dt + σI It dC
I
t , (4b)

dRt = (λIt − μRt ) dt + σR Rt dC
R
t (4c)

where a is the influx of individuals into the susceptible; β is the disease transmission
coefficient; μ represents the natural mortality rate; ε represents additional death rate
related to pandemic infection; λ represents the rate of recovery from infection; CS

t ,
C I
t , andC

R
t are independent Liu processes; σS , σI , and σR are positive numbers which

represent the volatility of the diffusion processes, respectively.
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The SIR model studies the transmission dynamics of the disease and the resulting
population flows among the compartments. Since the number of the total population
is deterministic, we only put two diffusion sources into modeling It and Rt , and let the
rest of the population be susceptible. Namely, we set σS = 0 in the following parts.
In our model, we just introduce It as the infection cases. Actually, more sub-groups
can be added into the system like hospitalizations cases, ICU cases, and ventilator
cases in SIR models, as discussed by Hill et al. (2020). There is no increase in the
technical difficulty if we add more items into our model. The theorems proved in the
following sections also hold under these extensions. Different from other uncertain
models where the transmission rate or recovery rate are modeled via Liu processes,
multiple diffusion sources are introduced in our model to characterize various sources
of in-deterministic.

Next, we compare our model with existing uncertain epidemic models. First, our
model is different from the uncertain SIS epidemic model proposed by Li et al. (2017).
The uncertain SIS epidemic model does not involve the recovered cases, which is
immune to the virus in our model. Without recovered cases, the proposed uncertain
SISmodel could be used to describe common seasonal influenza. Pandemic is different
from this seasonal influenza, which lasts for a short period, mostly less than two years.
The following studies by Fang et al. (2018), Li et al. (2018), and Li and Teng (2019)
all focus on uncertain SIS models other than the SIR model. Secondly, our model is
different from the uncertain SEIAR model introduced by Jia and Chen (2020). It is
undeniable that the deterministic SEIR model could indeed degenerate into an SIR
model. The diffusion sources in their uncertain SEIRmodel have specific correlations.
Even if some volatility parameters in the uncertain SEIAR model become zero, our
model is still not a special case of their model. There is no α-path solution for this
uncertain SEIAR model, which prevents its further applications in high-dimensional
situations. In the next section, we derive theα-path solutions of ourmodel and estimate
parameters for the proposed model with application to COVID-19 pandemic.

4 Uncertain˛-paths for SIR pandemic model

It is obvious that the proposed uncertain SIRpandemicmodel has no analytic solutions.
In order to solve this uncertain differential system, we plan to promote the uncertain α-
path method to develop numerical solutions. Now, we will discuss the α-paths for the
uncertain SIR pandemic model. For the uncertain system (4), the uncertain α-path is
defined based on each uncertain differential equation. In fact, if the parameter σS 
= 0,
the system (4) does not have α-path. Now, we will focus on the condition that σS = 0
and prove the α-path for it.

Definition 7 The α-path (0 < α < 1) of the uncertain differential system (4) with
initial values S(0), I (0) and R(0) are deterministic functions Sα

t , I α
t and Rα

t with
respect to t , respectively, that solve the corresponding ordinary differential equations

dS1−α
t = (a − β I α

t S
1−α
t − μS1−α

t ) dt, (5a)

dI α
t = (β I α

t S
1−α
t − (λ + ε + μ)I α

t + σI I
α
t Φ−1(α)) dt, (5b)
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dRα
t = (λI α

t − μRα
t + σR R

α
t Φ−1(α)) dt (5c)

where Φ−1(α) is the inverse uncertainty distribution of standard normal uncertain
variable, i.e.,

Φ−1(α) =
√
3

π
ln

α

1 − α
, 0 < α < 1.

In order to study the α-path of the proposed uncertain differential equations, a useful
lemma is first introduced here. For a system with several differential equations, there
is no general comparison theorem. We need to apply the comparison theorem to each
differential equation.

Lemma 1 Assume that f (t, x, y) and g(t, x) are continuous functions. Let φt be a
solution of the ordinary differential equation

dx

dt
= f (t, x, y) + K |g(t, x)|, x(0) = x0

where K is a real number. Let ψt be a solution of the ordinary differential equation

dx

dt
= f (t, x, y) + kt g(t, x), x(0) = x0

where kt is a real function satisfying

(i) If kt g(t, x) ≤ K |g(t, x)| for t ∈ [0, T ], then ψt ≤ φt ,

(ii) If kt g(t, x) > K |g(t, x)| for t ∈ [0, T ], then ψt > φt .

Theorem 3 Let St , It , Rt and Sα
t , I α

t , Rα
t be the solutions and α-paths of the uncertain

differential Eqs. (4a–4c) when σS = 0, respectively. Then

M{St ≥ S1−α
t , It ≤ I α

t , Rt ≤ Rα
t , ∀t > 0} = α, (6)

M{St < S1−α
t , It > I α

t , Rt > Rα
t , ∀t > 0} = 1 − α. (7)

Proof Note that σI I α
t ≥ 0 and σR Rα

t ≥ 0, ∀α ∈ [0, 1]. Write

Λ1 =
{
γ

∣∣∣∣dC I
t (γ )

dt
≤ Φ−1(α),

dCR
t (γ )

dt
≤ Φ−1(α), ∀t ∈ (0, u]

}

��
where Φ−1 is the inverse uncertainty distribution of N(0, 1) for any given u > 0.
Since both C I

t and CR
t are independent increment processes. We getM{Λ1} = α. For

any γ ∈ Λ1, we have

a − (β It (γ )St (γ ) + μSt (γ )) ≥ a − (β I α
t S

1−α
t + μS1−α

t )),
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β It (γ )St (γ ) − (λ + ε + μ)It (γ ) + σS It (γ )
dC I

t (γ )

dt
≤ β I α

t S
1−α
t

−(λ + ε + μ)I α
t + σS I

α
t Φ−1(α),

λIt (γ ) − μRt (γ ) + σR Rt (γ )
dCR

t (γ )

dt
≤ λI α

t − μRα
t + σR R

α
t Φ−1(α).

It follows from Lemma 1 that St (γ ) ≥ S1−α
t , It (γ ) ≤ I α

t and Rt (γ ) ≤ Rα
t . Thus, we

get

Λ1 ⊂ {St ≥ S1−α
t , It ≤ I α

t , Rt ≤ Rα
t , ∀t > 0}.

It follows from the independence of C I
t and CR

t that

M{St ≥ S1−α
t , It ≤ I α

t , Rt ≤ Rα
t , ∀t > 0} ≥ M{Λ1} = α. (8)

On the other hand, write

Λ2 =
{
γ

∣∣∣∣dC I
t (γ )

dt
> Φ−1(α),

dCR
t (γ )

dt
> Φ−1(α) for t ∈ (0, u]

}
.

Then, with the help of independence of C I
t and CR

t , we getM{Λ2} = 1− α. For any
γ ∈ Λ2, we have

a − (β It (γ )St (γ ) + μSt (γ )) < a − (β I α
t S

1−α
t + μS1−α

t )),

β It (γ )St (γ ) − (λ + ε + μ)It (γ ) + σS It (γ )
dC I

t (γ )

dt
> β I α

t S
1−α
t

−(λ + ε + μ)I α
t + σS I

α
t Φ−1(α),

λIt (γ ) − μRt (γ ) + σR Rt (γ )
dCR

t (γ )

dt
> λI α

t − μRα
t + σR R

α
t Φ−1(α).

It follows from Lemma 1 that St (γ ) < S1−α
t , It (γ ) > I α

t and Rt (γ ) > Rα
t . Thus, we

get

Λ2 ⊂ {St < S1−α
t , It > I α

t , Rt > Rα
t , ∀t > 0}.

It follows from the independence of C I
t and CR

t that

M{St < S1−α
t , It > I 1−α

t , Rt > R1−α
t , ∀t > 0} ≥ M{Λ2} = 1 − α. (9)

By Eqs. (8) and (9), we have

M{St ≥ S1−α
t , It ≤ I α

t , Rt ≤ Rα
t , ∀t > 0} = α.

The theorem is verified.
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Theorem 4 Let St , It , Rt and Sα
t , I α

t , Rα
t be the solutions and α-paths of the uncertain

differential Eqs. (4a–4c) when σS = 0, respectively. Then we have

M{St ≤ Sα
t , ∀t > 0} = α, M{St > Sα

t , ∀t > 0} = 1 − α, (10a)

M{It ≤ I α
t , ∀t > 0} = α, M{It > I α

t , ∀t > 0} = 1 − α, (10b)

M{Rt ≤ Rα
t , ∀t > 0} = α, M{Rt > Rα

t , ∀t > 0} = 1 − α. (10c)

Proof Note that

{St ≥ S1−α
t , It ≤ I α

t , Rt ≤ Rα
t , ∀t > 0} ⊂ {St ≥ S1−α

t , ∀t > 0}

and

{St < S1−α
t , It > I α

t , Rt > Rα
t , ∀t > 0} ⊂ {St < S1−α

t , ∀t > 0}.

It follows from Eqs. (8) and (9) that

M{St ≥ S1−α
t , ∀t > 0} ≥ M{St ≥ S1−α

t , It ≤ I α
t , Rt ≤ Rα

t , ∀t > 0} = α

and

M{St < S1−α
t , ∀t > 0} ≥ M{St < S1−α

t , It > I α
t , Rt > Rα

t , ∀t > 0} = 1 − α.

The union of this two disjoint sets {St ≥ S1−α
t , ∀t > 0} and {St < S1−α

t , ∀t > 0} is
subset of the universal set Γ . Since

M{St ≥ S1−α
t , ∀t > 0} + M{St < S1−α

t , ∀t > 0} ≤ 1,

��
we have

M{St ≥ S1−α
t , ∀t > 0} = α, M{St < S1−α

t , ∀t > 0} = 1 − α.

The proof for It and Rt is analogous. The theorem is proved.

Theorem 5 Let St , It , Rt and Sα
t , I α

t , Rα
t be the solutions and α-paths of the uncertain

differential Eqs. (4a–4c) when σS = 0, respectively. Then It and Rt have inverse
uncertainty distributions

Φ−1
t (α) = I α

t and Ψ −1
t (α) = Rα

t ,∀α ∈ (0, 1),

respectively. And we have the expected values

E[It ] =
∫ 1

0
I α
t dα and E[Rt ] =

∫ 1

0
Rα
t dα.

123



Numerical solution and parameter estimation for uncertain SIR model… 199

Proof For any given time T , it follows from Theorem 4 that

{It ≤ I α
t } ⊃ {It ≤ I α

t , ∀t > 0},
{It > I α

t } ⊃ {It > I α
t , ∀t > 0}.

��
We have

M{It ≤ I α
t } ≥ {It ≤ I α

t , ∀t > 0} = α,

M{It > I α
t } ≥ {It > I α

t , ∀t > 0} = 1 − α.

It follows from the duality of uncertain measure that

M{It ≤ I α
t } + M{It > I α

t } = 1.

Thus, we have

M{It ≤ I α
t } = α,

M{It > I α
t } = 1 − α.

Furthermore, we obtain

E[It ] =
∫ 1

0
I α
t dα.

Proving for Rt is completely analogous.

Theorem 6 Let St , It , Rt and Sα
t , I α

t , Rα
t be the solutions and α-paths of the uncertain

differential Eqs. (4a–4c) when σS = 0, respectively. Then the supremum process

Yt = max
0≤t≤T

It

has α-paths

Y α
t = max

0≤t≤T
I α
t . (11)

Proof For a sample path It (γ ) such that IT (γ ) ≤ I α
t for any time T , we have

max
0≤t≤T

It (γ ) ≤ max
0≤t≤T

I α
t .

��
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It implies

{
YT ≤ max

0≤t≤T
I α
t , ∀T > 0

}
⊃ {IT ≤ I α

T , ∀T > 0}.

Using the monotonicity theorem of uncertain measure, we have

M

{
YT ≤ max

0≤t≤T
I α
t , ∀T > 0

}
≥ M{IT ≤ I α

T , ∀T > 0} = α.

Similarly, we have

M

{
YT > max

0≤t≤T
I α
t , ∀T > 0

}
≥ M{IT > I α

T , ∀T > 0} = 1 − α.

It follows from the duality of uncertain measure that

M

{
YT > max

0≤t≤T
I α
t , ∀T > 0

}
+ M

{
YT ≤ max

0≤t≤T
I α
t , ∀T > 0

}
= 1.

Thus, we have

M

{
YT ≤ max

0≤t≤T
I α
t , ∀T > 0

}
= α,

M

{
YT > max

0≤t≤T
I α
t , ∀T > 0

}
= 1 − α.

So YT has α-paths

Y α
T = max

0≤t≤T
I α
t , α ∈ (0, 1). (12)

Theorem 7 Let St , It , Rt and Sα
t , I α

t , Rα
t be the solutions and α-paths of the uncertain

differential Eqs. (4a–4c) when σS = 0, respectively. Then the time integral process

ZT =
∫ T

0
Rt dt

has α-paths

Zα
T =

∫ T

0
Rα
t dt .

Proof For a sample path RT (γ ) such that RT (γ ) ≤ Rα
T for any time T , we have
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∫ T

0
Rt (γ ) dt ≤

∫ T

0
Rα
t dt .

��
It implies

{∫ T

0
Rt dt ≤

∫ T

0
Rα
t dt, ∀T > 0

}
⊃ {

RT ≤ Rα
T , ∀T > 0

}
.

Using the monotonicity theorem of uncertain measure, we have

M

{∫ T

0
Rt dt ≤

∫ T

0
Rα
t dt, ∀T > 0

}
≥ M

{
RT ≤ Rα

T , ∀T > 0
} = α.

In the same way, we obtain

M

{∫ T

0
Rt dt >

∫ T

0
Rα
t dt, ∀T > 0

}
≥ M

{
RT > Rα

T , ∀T > 0
} = 1 − α.

It follows from duality axiom of uncertain measure that

M

{∫ T

0
Rt dt ≤

∫ T

0
Rα
t dt, ∀T > 0

}
= α,

M

{∫ T

0
Rt dt >

∫ T

0
Rα
t dt, ∀T > 0

}
= 1 − α.

Thus, we have the α-paths of ZT

Zα
T =

∫ T

0
Rα
t dt .

Theorem 8 Let St , It , Rt and Sα
t , I α

t , Rα
t be the solutions and α-paths of the uncertain

differential Eqs. (4a–4c) when σS = 0, respectively. Then for the monotone function
J , we have

E [J (It )] =
∫ 1

0
J (I α

t ) dα, (13a)

E [J (Rt )] =
∫ 1

0
J (Rα

t ) dα. (13b)

Proof At first, it follows from Theorem 4 that It has an uncertainty distributions
Ψ −1
t (α) = I α

t . When J is a strictly increasing function, it follows from Theorem 1
that J (It ) has an inverse uncertainty distribution Φ−1

t (α) = J (I α
t ). Thus, we have
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E[J (It ] =
∫ 1

0
Φ−1

t (α) dα =
∫ 1

0
J (I α

t ) dα.

��
When J is a strictly decreasing function, it follows from Theorem 1 that J (It ) has an
inverse uncertainty distribution Φ−1

t (α) = J (I 1−α
t ). Thus, we have

E[J (It ] =
∫ 1

0
Φ−1

t (1 − α) dα =
∫ 1

0
J (I 1−α

t ) dα =
∫ 1

0
J (I α

t ) dα.

The proof for Eq. (13b) is completely analogous. The theorem is thus proved.
In the pandemic, it is useful to use

E

[
max
0≤t≤T

It

]
=

∫ 1

0
max
0≤t≤T

I α
t dα

to estimate the demand of medical equipment like personal protective equipment
(PPE), ICU beds and ventilators. The value

E

[∫ T

0
Rt dt

]
=

∫ 1

0

∫ T

0
Rα
t dt dα

is also a useful number to help formulate reopen policies. In fact, the solutions to
uncertain differential Eqs. (4a–4c) are uncertain contour processes. The above results
could also be proved via the principles provided by Yao (2015).

5 Numerical method

In this section, we will first estimate parameters for the uncertain SIR model and then
introduce numerical methods to solve α-path solutions.

5.1 Parameter estimation

Wewill employ themethod proposed byYao andLiu (2020) to estimate the parameters
in our uncertain SIR model. The basic idea is to set the empirical moments of the
functions of the parameters and the observed data equal to themoments of the standard
normal uncertainty distribution. Let i = 1, 2 . . . , n be the days after the public data
of infected and recovered numbers available. Compare to the whole population, the
infected number is very low. For model simplification, we set S(i) = N where N is
the whole population number. The uncertain SIR system has the following discrete
form

I (i + 1) = I (i) + β I (i)N − (λ + ε + μ)I (i) + σI I (i)(C
I (i + 1) − C I (i)),(14a)

R(i + 1) = R(i) + λI (i) − μR(i) + σR R(i)(CR(i + 1) − CR(i)). (14b)
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In the above difference equations, the parameters a, ε, and μ could be obtained from
public data resources. We only need to estimate the parameters β, λ, σI , and σR . With
the help of Yao and Liu (2020), we build the following two statistics

H I
i = (I (i + 1) − I (i)) − (β I (i)N − (λ + ε + μ)I (i))

σI I (i)
∼ N(0, 1), (15a)

HR
i = R(i + 1) − R(i) − (λI (i) − μR(i))

σR R(i)
∼ N(0, 1). (15b)

For the estimating of parameters β, λ, σI , and σR , the Eqs. (15a–15b) can be regarded
as n−1 samples of a standard normal uncertainty distributionN(0, 1). The k-th sample
moments equal the k-th population moments

1

n − 1

n−1∑
i=1

(H I
i )k =

(√
3

π

)k ∫ 1

0

(
ln

α

1 − α

)k

dα, (16)

1

n − 1

n−1∑
i=1

(HR
i )k =

(√
3

π

)k ∫ 1

0

(
ln

α

1 − α

)k

dα. (17)

We use the 1st and 2nd moments to estimate the four parameters with

1

n − 1

n−1∑
i=1

H I
i = 0,

1

n − 1

n−1∑
i=1

(H I
i )2 = 1, (18)

1

n − 1

n−1∑
i=1

HR
i = 0,

1

n − 1

n−1∑
i=1

(HR
i )2 = 1. (19)

Solving the above equations, we get

λ̂ =
(

1

n − 1

n−1∑
i=1

R(i + 1) − R(i) + μR(i)

R(i)

)
/

(
1

n − 1

n−1∑
i=1

I (i)

R(i)

)
, (20a)

σ̂R =
√√√√ 1

n − 1

n−1∑
i=1

(
R(i + 1) − R(i) − (λ̂I (i) − μR(i))

R(i)

)2

, (20b)

β̂ = 1

n − 1

n−1∑
i=1

(I (i + 1) − I (i)) + (λ̂ + ε + μ)I (i))

I (i)N
, (20c)

σ̂I =
√√√√ 1

n − 1

n−1∑
i=1

(
(I (i + 1) − I (i)) − (β̂ I (i)N − (λ̂ + ε + μ)I (i))

I (i)

)2

.(20d)
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5.2 Numerical methods for˛-path

Based on the previous theorems, a 99-method for solving a nested uncertain differential
equation is designed as below.

Step 0: Fix a time T and set α = 0.
Step 1: Set α ← α + 0.01.
Step 2: Solve the corresponding ordinary differential equations

dS1−α
t = (a − β I α

t S
1−α
t − μS1−α

t ) dt, (21a)

dI α
t = ((β I α

t S
1−α
t − (λ + ε + μ)I α

t ) + σIΦ
−1(α)I α

t ) dt, (21b)

dRα
t = ((λI α

t − μRα
t ) + σRΦ−1(α)Rα

t ) dt, (21c)

Φ−1(α) =
√
3

π
ln

α

1 − α
, t ∈ (0, T ]. (21d)

Then we obtain Sα
t , I α

t , and Rα
t with initial conditions S(0) = S0, I (0) = I0,

and R(0) = R0, respectively. It is suggested to employ numerical methods
to solve the ordinary differential equations when the analytic solutions are
unavailable.

Step 3: Repeat Step 1 and Step 2 for 99 times.
Step 4: The solutions St , It , and Rt have a 99-table,

0.01 0.02 … 0.99

S0.01t S0.02t … S0.99t
I 0.01t I 0.02t … I 0.99t
R0.01
t R0.02

t … R0.99
t

This table gives an approximate inverse uncertainty distributions of St , It , and Rt i.e.,
for any α = i/100, i = 1, 2, . . . , 99, we can find Sα

t , I α
t , Rα

t from the table such that

M{St ≥ S1−α
t , It ≤ I α

t , Rt ≤ Rα
t , ∀t > 0} = α.

If α 
= i/100, i = 1, 2, . . . , 99, then it is suggested to employ a numerical inter-
polation method to get approximate Sα

t , I α
t , R

α
t . The 99-method can be extended to

999-method if more precise uncertainty distributions for the uncertain system (4a–4c)
are needed.

6 Calibration for numerical solutions

We collect COVID-19 data of Hubei province from January 25 to April 23, 2020,
which contains numbers of active cases and recovered cases. We put the whole data in
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Table 1 The numbers of active and recovered COVID-19 cases in Hubei from January 25 to April 23, 2020

Data I R Data I R Data I R

2020/1/25 958 42 2020/2/24 41,660 20,912 2020/3/25 2896 61,731

2020/1/26 1303 44 2020/2/25 39,755 23,200 2020/3/26 2526 62,098

2020/1/27 2567 47 2020/2/26 36,829 26,403 2020/3/27 2054 62,565

2020/1/28 3349 80 2020/2/27 34,715 28,895 2020/3/28 1733 62,882

2020/1/29 4334 90 2020/2/28 32,959 31,187 2020/3/29 1461 63,153

2020/1/30 5486 116 2020/2/29 30,543 33,757 2020/3/30 1283 63,326

2020/1/31 6738 166 2020/3/1 28,216 36,167 2020/3/31 1186 63,417

2020/2/1 8565 215 2020/3/2 25,905 38,556 2020/4/1 987 63,612

2020/2/2 10,532 295 2020/3/3 24,085 40,479 2020/4/2 834 63,762

2020/2/3 12,712 396 2020/3/4 22,695 41,966 2020/4/3 648 63,945

2020/2/4 15,679 520 2020/3/5 21,239 43,468 2020/4/4 577 64,014

2020/2/5 18,483 633 2020/3/6 19,710 45,011 2020/4/5 518 64,073

2020/2/6 20,677 817 2020/3/7 18,303 46,433 2020/4/6 448 64,142

2020/2/7 23,139 1115 2020/3/8 17,151 47,585 2020/4/7 401 64,187

2020/2/8 24,881 1439 2020/3/9 15,671 49,056 2020/4/8 351 64,236

2020/2/9 26,965 1795 2020/3/10 14,427 50,298 2020/4/9 320 64,264

2020/2/10 28,532 2222 2020/3/11 13,171 51,553 2020/4/10 303 64,281

2020/2/11 29,659 2639 2020/3/12 11,772 52,943 2020/4/11 244 64,338

2020/2/12 43,455 3441 2020/3/13 10,431 54,278 2020/4/12 219 64,363

2020/2/13 46,495 4107.5 2020/3/14 9605 55,094 2020/4/13 179 64,402

2020/2/14 48,175 4774 2020/3/15 8701 55,987 2020/4/14 146 64,435

2020/2/15 49,030 5623 2020/3/16 7795 56,883 2020/4/15 122 63,494

2020/2/16 49,847 6639 2020/3/17 6992 57,678 2020/4/16 109 63,507

2020/2/17 50,338 7862 2020/3/18 6287 58,381 2020/4/17 105 63,511

2020/2/18 50,633 9128 2020/3/19 5719 58,942 2020/4/18 102 63,514

2020/2/19 49,665 10,337 2020/3/20 5224 59,432 2020/4/19 97 63,519

2020/2/20 47,627 13,577 2020/3/21 4768 59,879 2020/4/20 69 63,547

2020/2/21 46,439 15,299 2020/3/22 4318 60,323 2020/4/21 47 63,569

2020/2/22 44,604 16,738 2020/3/23 3828 60,810 2020/4/22 23 63,593

2020/2/23 43,369 18,854 2020/3/24 3431 61,201 2020/4/23 12 63,604

Table 1. The population of Hubei is 59.27million. Since the number of recovered cases
on February 13 is missing, we use the average of two adjacent days to approximate.

Based on the growth of the data, we divide the data into two groups and estimate the
parameters separately. Considering that Hubei changed the ‘top leader’ on February
13. Taking this day as a breakpoint, we divide the first 20 days as the first stage
and the left days as the second stage. Employing the equations (20), we estimate the
parameters. From the estimated results, we find β2 = −1.6777∗10−11 is a very small
negative number and β2 ∗ N = −9.9514 ∗ 10−4, which shows almost no contact rate.
Such a tiny number could be ignored. This indicates that lockdown policy reaches
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Fig. 1 The α-path of the calibrated uncertain SIR model with α = 0.1, 0.5, 0.7 and 0.9

nearly 100% efficiency after replacing the ‘top leader’, which is consistent with the
conclusions of the literature Li et al. (2020). Observing the numerical results, we find
the estimated σI and σR are too large. We replace them with each divided by the total
length of simulation dates. We put the estimate parameters bellow

β1 = 3.9015 ∗ 10−9, β2 = −1.6777 ∗ 10−11, (22)

σI1 = 1.0015 ∗ 10−2, σI2 = 1.0065 ∗ 10−2, (23)

λ1 = 9.7829 ∗ 10−3, λ2 = 3.9456 ∗ 10−2, (24)

σR1 = 1.2125 ∗ 10−3, σR2 = 4.4196 ∗ 10−4. (25)

Plug the obtained number of each parameter into the uncertain SIR model, we have
the follow first stage equations

dSt = −3.9015 ∗ 10−9 It St dt, S0 = 59269000,

dIt = (3.9015 ∗ 10−9 It St − 1.9809 ∗ 10−2 It ) dt + 1.0015 ∗ 10−2 It dC
I
t , I0 = 958,

dRt = (9.7829 ∗ 10−3 It − 2.6027 ∗ 10−5Rt ) dt + 1.2125 ∗ 10−3Rt dC
R
t , R0 = 42,

and the second stage equations

dSt = 1.6777 ∗ 10−11 It St dt, S20 = 59219397,

dIt = −1.6777 ∗ 10−11 It St − 4.9482 ∗ 10−2 It dt + 1.0065 ∗ 10−2 It dC
I
t ,

I20 = 46495,

dRt = (3.9456 ∗ 10−2 It − μRt ) dt + 4.4196 ∗ 10−4Rt dC
R
t , R20 = 4107.5.

123



Numerical solution and parameter estimation for uncertain SIR model… 207

We employ Runge–Kutta methods to calculate the numerical α-path solutions. As
shown in Fig. 1, all the observed data fall in the area nearly between the 0.1-path and
the 0.9-path of the uncertain differential equation with the estimated parameter, so
the estimates of β, λ, σI , and σR are acceptable. Our model could be used not only
to estimate the entire trend at the early stage of the pandemic, but also to update the
parameters later to make more accurate estimates.

7 Conclusions

We build an uncertain SIR model with multiple diffusion sources via uncertain dif-
ferential equations in this paper. In order to solve this high-dimensional uncertain
differential equation system, α-path-based approach is proposed. Based on it, we
calculate the maximum uncertainty distributions and related expected values of the
solutions. Furthermore, we employ the method of moments to estimate parameters
and design a numerical algorithm to solve it. The uncertain SIR model is applied to
describing the COVID-19 pandemic. Numerical calibrations are discussed with and
without public data, respectively. Without data, the parameters follow the setting from
literatures. Based on obtained uncertainty distributions of the solutions, we discuss
potential demand for ICU beds and ventilators at the early stage of the pandemic.
Using COVID-19 data in Hubei province, we estimate the parameters and solve the
related α-path solutions. Our results show that the parameter estimates are acceptable.
The proposed high-dimensional α-path-based approach opens up new possibilities
in solving high-dimensional uncertain differential equations and new applications in
other fields.
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