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1 Introduction

In the earlier stage of COVID-19, the allocation of healthcare is a tricky problem even though

all these stuffs are produced in an unprecedented speed. The scarcity of healthcare in the early

stage is linked to market design problem self-evidently. There are so many standards need to

consider: the ethics value, the priority and the fairness as we did in the affirmative actions.

Agencies have developed a series of baselines for the public health issue. Specifically, (1) the

fair allocation to the groups of people with different gender, race and age; (2) maximizing

the welfare of the society; (3) respect people who have done great contribution before. After

respecting these protocols, there are a series of influential research work ongoing and many

agencies have adopted their advice. Traditional mechanism is priority system, for example,

2018 US Centers for Disease Control Vaccine Allocation guideline gives the definitions of four

types of priority (CDC, 2018)

(1) Providing homeland and national security, (2) Providing health care and community support

services, (3) Maintaining critical infrastructure, and (4) being a member of the general population.

Another priority orders are given by an objective scoring method, resulting in a priority point

system. This have been implemented in the allocation ICU beds and ventilators. Also, this

is used in other similar allocation problem like registered system in some cities of China. No

matter what kind of rationing system it is about, one common issue in many debates is that

they neglect some other important elements that are related to lives Akbarpour et al. [2021].

Related Literature Therefore, a series of research try to balance different values in the

healthcare rationing. The pioneering work of Pathak et al. [2021] gives a baseline frame-

work about allocation based on several primary axioms. And their approach has been recom-

mended or adopted by various organizations including the NASEM and endorsed by medical

researcher (Emanuel et al. [2020]; Sönmez S [2020]; Pathak PA [2021]). In the follow-up work,
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Grigoryan [2021] considers optimal approaches for variants of the problem with matching ef-

fectiveness and minimal cost-flow. He built on the ideas of Pathak et al. [2021] by introducing

a match quality term to the allocation model, leading to a mechanism for allocating vaccines

to different groups of agents in ways that maximize group-specific efficacy while respecting

prioritization goals. In another thread of mechanism design literature, Akbarpour et al. [2021]

proposes a method of incorporating various unobservable features compared to former re-

searches.

In contrast to the papers on healthcare rationing discussed above, I simplify the assumption

that agents with specific type. Compared to Grigoryan [2021] and Abdulkadiroğlu and Grig-

oryan [2021] I dropped the specific type restrictions for agents (so-called soft-reserve system)

and consider heterogeneous preference for healthcare. They consider a matching system with

heterogeneous types of agents and homogenous preference for different kinds of healthcare.

Also, compared to Pathak et al. [2021], In order to maximize the matching size and respect the

baseline priority as much as possible, I use a matching order that is different from Deferred

Acceptance order in their paper. My algorithm only considers the most simple measurement

of efficiency-the size of the matching and meet the axioms promoted by Pathak et al. [2021] at

the same time.

2 The Model

Allocation problem has been put into the framework of two-side matching. I refer similar

framework of Pathak et al. [2021] and Abdulkadiroğlu and Grigoryan [2021]. There is a finite

set of agents A. The matching is a mapping M : 2A → 2A such that ∀A ⊆ A,M(A) ⊆ A,

and |M(A)| ≤ q. Applicants are also categorized into different set of types T by mapping

C defined by {t ∈ T : C(a) = t, a ∈ A}. For the convenience I define the notion At : {a ∈
A : C(a) = t, t ∈ T }, at ∈ At. Also, quota q can also be divided into different categories of T
such that ∑t∈T qt = q and a priority ranking ≥t which is a preorder on A∪ {∅}. The baseline

ordering of allocation is π.

The matching µ ∈ M should follow these three axioms, which is the minimum requirement

for a reserved-quota matching system:

Axiom 1. A matchingM complies with eligibility condition if ∀a ∈ A and ∀t ∈ T ,

µ(a) = t→ a ≥t ∅

Axiom 2. A matching µ ∈ M is non-wasteful if ∀a ∈ A and ∀t ∈ T ,

a ≥t ∅ and µ(a) = ∅→
∣∣∣µ−1(t)

∣∣∣ = rt

if t is eligible for a.
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Axiom 3. A matching µ ∈ M respects priorities within each category t ∈ T if for any a, a′ ∈ A,

µ(a) = t, µ
(
a′
)
= ∅→ a ≥c a′

Besides these three conditions, it should follow maximizing-efficiency condition.

Definition 1. A matching µ ∈ M is maximizing-efficiency if it has the most size among all matching

meets Axiom 1.

Definition 2. A matching µ ∈ M is strategy-proofness if µ(a) = ∅ and µ′(a) = ∅ for any other

priority represent a.

My target is to explore an algorithm to meet three axioms and one of two of definitions. In

many real-life application of reserves allocations, we cannot use baseline order directly consid-

ering the affirmative actions. Diversity, equity and inclusiveness are also the consideration of

allocation system. A typical case is education, the racial minorities and other marginal commu-

nity are also shut out of the system, which is also true for health care allocation system. This is

the incentive to introduce a kind of unreserved and beneficiary group.

Definition 3. Beneficiary-type and unreserved-type. If one category is not necessary eligible for

any agent with heterogeneous priory belongs to which namely

∀t ∈ T with ≥t

And another type u ∈ T is eligible for any types of agents endowed with baseline order. That is

>u= π

As the definition of Pathak et al. [2021], there are two kinds of reserves:

(i) Soft reserves: for any type of agents a ∈ A, and any category of health care qt, individuals

are eligible for all categories, i.e.

a ≥t ∅

(ii) Hard reserves: for category t ∈ T \{u}, all the beneficiary agents of type t are eligible

at ≥t ∅ but ∅ >t at′ if t′ 6= t

The sequence of unreserved category matters for the results of the allocation. The results are

totally different if we reverse the order of unreserved and reserved healthcare. I use a simple

example to illustrate the difference between these two system but I mainly consider a simple

case of software reserve system.

Example 1. Consider a set of agents A = {a1, a2, a3} , T = {t1, t2, u} , q1 = 1, qu = 1, C (a1) =

t1, C (a2) = t2, C (a3) = t2. Baseline order π = (1, 2, 3).

If it is a hard-reserve system:
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Case 1. If we tackle unreserved stuffs firstly, the allocation results will be(
a1 a2 a3

u ∅ ∅

)

Case 2. If we tackle beneficiary category firstly, which will become(
a1 a2 a3

q1 u ∅

)

If it is a soft-reserve system:

Case 1. If we tackle unreserved stuffs firstly, the allocation results will be(
a1 a2 a3

u q1 ∅

)

Case 2. If we tackle beneficiary category firstly, which will become(
a1 a2 a3

q1 u ∅

)

In example 1, we can see the difference in soft-reserve system and hard-reserve system is

there is the beneficiary category is allocated to the agent belong to which. But in case 1 of hard-

reserved system, there is no exact beneficiary class is assigned to right agents. In sight of this,

we can introduce another notion maximum beneficiary matching. So, in terms of maximizing

the efficiency we only consider soft-reserve system in this work.

2.1 No unreserved healthcare, qu = 0

Firstly, we consider the case that qu = 0.

Example 2. If agents set A = {a1, a2, a3} , a1 ∈ t1, a2 ∈ t2, a3 ∈ t2. Baseline order π = (1, 2, 3).

Priority of t1 is a1 ≥ a3 ≥ ∅ and priority of t2 is a1 ≥ ∅ If we use the baseline order, the matching

results will be (
a1 a2 a3

t1 ∅ ∅

)
And another possible matching size which is better than this(

a1 a2 a3

t2 ∅ t1

)

In sight of this we introduce an algorithm called inverse-maximizing matching algorithm.
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Algorithm 1. Inverse-maximizing matching algorithm

Step 0. Let I0 = ∅,M0 = argmaxµ∈M
∣∣µ−1(A)

∣∣
Step 1(k). Given the baseline order π,

a1 π a2 π a3 . . . π a|A|

Process agent a|A|−(k−1) if a|A|−(k−1) /∈ I0. Consider the subgroup with excluding
{

a|A|−(k−1)

}
, in

order to avoid priority violation, agents that are with lower priority ∪t∈T Vt, Vt = {at : at has lower

priority than a|A|−(k−1)

}
also excluded. If

Mk = argmaxµ∈M

∣∣∣µ−1
(
A\
({

a|A|−(k−1)

}
∪ (∪t∈T Vt) ∪ Ik−1

))∣∣∣
andMk ⊆Mk−1, then define

Ik =
{

a|A|−(k−1)

}
∪ Ik−1 ∪ (∪t∈T Vt)

Otherwise

Ik = Ik−1, Mk =Mk−1

This step will stop if all agents A have been considered.

Step k+1, Choose a matching µ ∈ Mk

Theorem 1. (Existence) Inverse-maximizing matching algorithm will generate a set of maximize

matching that meet requirements Axiom 1, Axiom 2, Axiom 3.

Proof. I use induction to prove this. AssumeMk meets Axiom 1, Axiom 2, Axiom 3. Because

∪t∈T Vt has also been excluded in the process of constructing Mk, which means all agents

in Ak+1 = A\
({

a|A|−(k−1)

}
∪ (∪t∈T Vt) ∪ Ik−1

)
can construct matching Mk+1 ⊆ Mk such

that is also eligible, i.e. ∀a ∈ Ak+1, µ ∈ Mk+1, µ(a) ∈ T , a >µ(a) ∅. Also, if matching µ ∈
Mk, ∀a, a′ ∈ Ak, µ(a) ∈ T , µ (a′) = ∅, a >µ(a) a′. For µ′ ∈ Mk+1, if a′ ∈ Vt = {at : at has lower

priority than a|A|−(k−1)

}
, then the allocation results will not be affected consider all agents

who have lower priority have been excluded. In another case, a′ /∈ Vt, then ∀a ∈ Vt such that

a′ π a. And the matching for a will also not be affected. If a ∈ A\M(A), µ(a) = ∅, it implies∣∣µ−1(C(a))
∣∣ = qC(a). Let the set of Mw ⊆ M,Mw is the set of non-wasteness matching. If

matching µ is a maximized matching, then any other matching µ′ ⊆ Mw ⊆ M, the size of

matching is less than maximized matching. Assume an agent a∗ ∈ A\M(A) can formalize

another matching such that
∣∣µ−1 (C (a∗))

∣∣ = qC(a∗). According to assumption, there will be at

least two agents a1, a2 ∈ M(A) will be excluded, then types C (a1) , C (a2) are wasted. On the

other hand, if matching µ makes C (a∗) wasted, then another matching µ′′ can be constructed

and the size of which is larger than µ. It contradicts the assumption.

Remark 1. Maximizing condition prescribes a stronger condition than non-wasteful condition.
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I have proved the existence of the matching µ, and a natural question is the uniqueness of

the matching generated by the algorithm.

Proposition 1. (Uniqueness and Respect Priority) The excluding set Ik is unique and matching |µ| =
|A| − |Ik|. And the matching is without justified envy.

Proof. Assume the |µ| < |A| − |Ik|. This means there exist at ∈ Ak such that µ (at) = ∅. If

Ik+1 = Ik ∪ at, the matching is not affected. This contradicts the processing of algorithm. If

µ (at) = ∅, µ (a′t) = t and at ≥t a′t, then exclude and let at ∈ Ik+1. In this case a Pareto optimal

matching with respect the priority can be constructed. The size of matching |µ| = |A| − |Ik|.
But it contradicts the formulation of matching µ because at will be excluded with regards to the

baseline order π.

Another important issue in matching design problem is if agents can manipulate their pref-

erence to change the results of the matching. Non-bossiness (Satterthwaite and Sonnenschein

[1981]) prescribes this nature. It says that whenever a change in an agent’s preferences does not

cause a change in his assignment, it should not cause a change in anybody else’s assignment:

thus, the entire allocation should remain the same. I consider a special case in this problem:

agents can declare they are ineligible to a type of healthcare.

Definition 4. Non-bossiness and quasi non-bossiness If any agent a ∈ A with preference t ≥a ∅

show a wrong priority order π′, and it will never affect the matching of a′ ∈ A\a, µ′ (a′) = µ (a′) , µ′

is generated by the fake preference of a.

Proposition 2. Inverse-maximizing matching algorithm is quasi non-bossiness and strategyproofness.

Proof. Given the baseline ordering π, suppose (1, 2, . . . |A|). Assume an is in the set of I, and

let In
k = {a ∈ Ik : anπa} i.e. agents that have lower priority than an. If an hesitate her preference

to declare she is not eligible to µ (an) ∈ T . To this end, we need to prove In = In′ . This means

we need to prove ∀ai ∈ In, ai ∈ In′ . If in step k, ai is considered in this step and generate

excluding set Ii. And if ai ∈ In, the matching µ is generated by In. And then for In′ , for all

agents a ∈ In\ {ai, an}, the priorities that are lower than ai are still the same. µ is also feasible

matching. Otherwise, if ai ∈ In′ , µ is also a feasible matching for ai ∈ In. Now prove the

strategyproofness. Suppose an is unmatched in matching µ, this is equivalent to an ∈ In
k and

needs to prove In
k = In′

k , which has been proved before.

2.2 Consider unreserved health care, qu 6= 0

In this section, I consider another case qu 6= 0. And consider all priorities of t ∈ T are homoge-

neous. According to Example 1, I give following definitions.
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Definition 5. Maximum Beneficiary Matching The set of beneficiary matching is all the agents that

are matched to the beneficiary categories. So the matching µ should be the matching gotten from the

maximum of the set.

µ ∈ argmaxv∈M

∣∣∣∪t∈T \{u}

(
v−1(t) ∩ At

)∣∣∣
Consider the certain policy sequence of allocating unreserved and beneficiary categories,

we can also give the definitions of Minimum-guarantee and Over-and-Above (Blakeney [1964])

Definition 6. Minimum-guarantee. Baseline order is π. If one agent a ∈ A is eligible for a beneficiary

category t ∈ T , and matching µ ∈ M implies that µ−1(t) ≤ qt. Then µ(a) = t. Otherwise µ(a) = u

if µ−1(u) ≤ qu.

Definition 7. Over-and-Above. Baseline order is π. If µ−1(u) ≤ qu and a is eligible for certain

t ∈ T , µ−1(t) ≤ qt. In the two cases we match a to t. Otherwise, we fill up the rest of categories: for

each t ∈ T , the highest min {qt, |Nt|} agents are allocated to t.

Algorithm 2. Inverse Smart Reserving Matching

Fix the parameter n is the number of reserved unite to be processed and n ≤ qu and other reserved

unreserved healthcare will be processed at the end of the algorithm. Iteratively construct the agents set

Au
0 ⊆ Au

1 ⊆ Au
2 . . . ⊆ Au

|A|

Au
i where i ≤ |A| is the set of agents to allocated to match unreserved agents and the order of consider-

ation is baseline order π. And series

A0 ⊆ A1 ⊆ A2 . . . ⊆ A|A|

decides the agents matched to beneficiary units. And the series generates the matching sequenceM0 ⊇
M1 ⊇M2 . . . ⊇M|A|.

Step 1. Let

Au
0 = ∅, A0 = ∅

Step 2(k) Consider 3 cases:

Case 1. If ak ∈ Au
k , and construct

Mk = {µ ∈ Mk−1 : µ (ak) = u}

And

Mk−1 = argmaxµ∈Mk−2

∣∣∣∪t∈T
(

µ−1(t) ∩ At

)∣∣∣ = argmaxµ∈M0

∣∣∣∪t∈T
(

µ−1(t) ∩ At

)∣∣∣
Case 2. If ak ∈ Ak, and construct

Mk,t = {µ ∈ Mk−1 : µ (ak) = t}
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And there exist t ∈ T such that |Mk,t| = argmaxµ∈M0

∣∣∪t∈T
(
µ−1(t) ∩ At

)∣∣.
Case 3: if 2 conditions above cannot be met keep the set same as former step

Au
k = Au

k−1

Ak = Ak−1

Step 3. Use inverse-maximizing rule to allocate all of remaining agents to beneficiary category.

Step 4. Allocate remaining unreserved categories according to the baseline order π.

Proposition 3. Inverse Smart Reserving Matching algorithm generates a set of maximize matching

that meet requirements Axiom 1, Axiom 2, Axiom 3.

Proof. Axiom 1, Axiom 2 are self-evident for the generation of the algorithm. Next step is to

prove the Axiom 3. Because of unreserved units’ priority is same as baseline order π, if there

exist µ (at) = ∅ and µ (a′t) = u but at ≥u a′t. In this case, according to the construction of

algorithm, at will be considered firstly and if µ (at) = ∅ then µ (a′t) = ∅, which contradicts the

assumptions. And for beneficiary units allocations, it follows Theorem 1.

Proposition 4. Inverse Smart Reserving Matching algorithm is quasi non-bossiness and strategyproof-

ness.

Proof. Consider several cases:

Case 1. The first step of the algorithm is to allocate part of unreserved units. In the true

case, agent an will not be incorporated into the set Au
k because that cannot generate maximum

matching. On the other hand, if an tells false priority to any t ∈ T \{u}, consider priority

of any t will not be affected by agent a ∈ A. So misrepresentation will not change the fact

that it cannot generate maximum beneficiary matching. Also, if a cannot be considered into

unreserved group, it means agents who have higher priorities have used up the unreserved

units.

Case 2. The second step of the algorithm is to allocate beneficiary units. It has been proved

before.

Case 3. The last step is to allocate unreserved units have not been allocated in step 1. If a isn’t

matched to the second part unreserved units, then priority lower than a cannot be matched.

And the misrepresentation of a cannot affect the matching of the first two sets. So a cannot be

matched to the set of unreserved units.
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