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1 Summary of Research

• Network interventions (Valente [2012]) are widely used in social sciences and public
health, but it is difficult to estimate the “pure” treatment effect due to the biases
introduced by peer effect and spillover effect.

• To improve prediction, we modified conformal inference to accommodate cluster ran-
domized trials with social networks.

• Theoretically, we proved that our conformal algorithm achieves marginal and condi-
tional coverage guarantees under the assumption of data exchangeability.

• In a numerical simulation, we compared our conformal algorithm with off-the- shelf
OLS, BART and Causal Forest methods (Fig. 1). We demonstrated superior efficiency
of our method, which has shorter intervals and higher coverage rates.

• In a field experiment, our conformal method overcame the misspecification problem
due to peer influence in physician social networks (Fig. 2). Our method improved
the prediction accuracy of physician burnout and medical errors, thus generalizing the
treatment effect to other global health settings.

• We offer the first field-experimental application and validation of the conformal causal
inference methodology (Lei and Candès [2021]).

2 Introduction

Estimation bias is widespread in field experiments and A/B testing in the fields of health
policy and marketing due to complicated internal nexus. Cluster design of experiments
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with the social networks has gained increased focus in recent years. Holtz et al. [2024]
provided experimental evidence that cluster randomization can counter interference bias in
social networks. However, they did not offer a solution that either solves or debiases the
estimation. To analyze the estimator under social networks, a spectrum of papers based on
modeling approaches exist, such as those by Leung [2020], Goldsmith-Pinkham and Imbens
[2013], Bramoullé et al. [2009]. These methods typically assume a linear-in-means setting
for the data-generating process. However, in practice, linear settings suffer from significant
misspecification problems, such as non-linear effects or omitted variable bias. To improve
the efficiency of estimation or reduce the bias in networks with spillover or peer effects,
many papers, including those by Basse and Airoldi [2018], Viviano [2020], and Viviano et al.
[2023], discuss how to design experiments. In this paper, we approach the problem from
another perspective by using a model-free method—conformal inference—to enhance the
generalizability and predictive power of the model. Tibshirani et al. [2019] and Lei and
Candès [2021] have demonstrated superior predictive abilities. This paper applies conformal
prediction to cluster design within social networks.

3 Setting

Assume there are J clusters j = 1, . . . , J and Ij individuals in each group i = 1, . . . , Ij. The

corresponding total population is NJ =
∑J

j=1 Ij.Wij is local network statistics generated
from adjacent matrix A of size NJ ×NJ ; Xij denotes the covariates. We follow the potential
outcome framework Rubin [1974] and Neyman [1937]. Assume the population is generated
i.i.d. from distribution PCj control by parameters Cj denoting cluster characteristics which
includes cluster treatment Tj is sample from an independent Bernoulli distribution P T 1 for
all i, j.

Zij = (Yij(1), Yij(0), Xij,Wij;Cij)
i.i.d.∼ PCj

The individual treatment effect is defined as τij := Yij(1) − Yij(0). To allow confor-
mal prediction feasible in this distribution, we need build the exchangeability of Zij as the
premise of conformal prediction. Now, we will discuss some canonical structures to see if the
exchangeability still holds in these cases.

Network Characteristics There are many possible structures for adjacent matrix A.
One natural question is in what case the exchangeability still holds. Assume the connections
are generated by Graphon model. Suppose {(Xij, Xi′j′ , ξij, ξi′j′ , Cij, Ci′j′)}ij,i′j′ are generated
in an i.i.d. way where ξij ∼ U [0, 1]. The adjacent matrix is generated by Aij,i′j′ = Ai′j′,ij =
1 (ηij ≤ ρnd (ξij, ξi′j′)) where ηij is another independent uniform distribution. ρn controls the
sparsity of the network.

Now let us incorporate two local network characteristics Wij into the model.

1. Average covariate X̃k
ij

1This is easy to realize in the cluster field experiment and debias the estimation see Holtz et al. [2024].
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Let αk
iji′j′ be a binary random variable equal to 1 if the shortest path from node ij to

i′j′ is of length k.

D̃k
ij =

∑
i′j′ ̸=ij

αk
iji′j′ , X̃k

ij =
1

D̃k
ij

∑
i′j′ ̸=ij

αk
iji′j′Xi′j′

2. Average outcome Ỹij

Let Φ be a weight matrix contain weighting elements ϕiji′j′(k) depending only on the
shortest path k.

Ỹij =
1∑

i′j′ ̸=ij ϕiji′j′(k)

∑
i′j′ ̸=ij

ϕiji′j′(k)Yi′j′

We currently assume Yij is generated by the same function form f for any i and j.
According to the connection intensity of between inter and between groups, there are

three cases of social network2:

Case 1 f is independent of cluster characteristics Cj except variable Tj. Apparently, Yij

are exchangeable because these outcomes are total symmetric.

Yij = f
(
Xij, ξij, Ỹij, D̃

1
ij, . . . , D̃

NJ−1
ij , X̃1

ij, . . . , X̂
NJ−1
ij ;Tij

)
Case 2 f depends on cluster characteristics Cij, the social network is sparse. Individuals
only have connections with peers in the same cluster. It implies the data are at least with
“within” cluster exchangeability. 3

Yij = f
(
Xij, ξij, Ỹij, D̃

1
ij, . . . , D̃

Ij−1
ij , X̃1

ij, . . . , X̂
Ij−1
ij ;Cij, Tij

)
Case 3 f depends on cluster characteristics and the individuals have connections across
the cluster.

Yij = f
(
Xij, ξij, Ỹij, D̃

1
ij, . . . , D̃

NJ−1
ij , X̃1

ij, . . . , X̂
NJ−1
ij ;Cij, Tij

)
3.1 Exchangeability

In this subsection, we will build the exchangeability. Firstly, the adjacent matrix A is
generate by paired random variables, so the premise is the exchangeability of pairs.

Assumption 1. Let Ziji′j′ = (Zij, Zi′j′). The Ziji′j′ is jointly exchangeable for any permuta-
tion σ on index set of individuals from each cluster {11, . . . , I11, 12, . . . I22, . . . , 1J, . . . , IJJ}.
i.e.

Zσ(ij)σ(i′j′)
d
= Ziji′j′

And the adjacent matrix is generated by Ziji′j′ : A = A(Ziji′j′)
2In these cases, I slightly abuse the notation Tij and Cij, actually Tij is one element of Cij. For the ease

of understanding, we disentangle it from Cij
3Our experiment data are closed to this case.
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Assumption 2. For any permutation σ, define the permutation of adjacent matrix A(σ) as
Aσ(ij)σ(i′j′). And σ(ij) denotes the position of permutation mapping. The network generating
variables Wij is defined by function ξ

Wσ(ij) = ξ
(
A(σ),

(
Xσ(ij)

)
ij
,
(
Cσ(ij)

)
ij

)
Lemma 1. (Lunde et al. [2023]) Let X be a random variable taking values in X . Y = H(X)
for some mappings H. Further suppose that for some collection of functions F such that

f(X)
d
= X ∀f ∈ F

Furthermore, let G be a collection of functions on Y ∈ Y and suppose that for any g ∈ G,
there exists a corresponding f ∈ F such that,

g(H(X)) = H(f(X))

Then g(Y )
d
= Y ∀g ∈ G.

Proposition 2. (Yij, Xij,Wij, Cij)ij are exchangeable.

Proof. By Assumption 1, for permutation mapping f ∈ F , f (Ziji′j′)
d
= Ziji′j′ . By Assump-

tion 2, for any permutation g ∈ G, define mapping H:

H
({

Zσ(ij)σ(i′j′)

})
=
({

Yσ(ij)

}
ij
,
{
Xσ(ij)

}
ij
, ξ
(
A(σ),

(
Xσ(ij)

)
ij
,
(
Cσ(ij)

)
ij

)
,
{
Cσ(ij)

}
ij

)
we can always find the corresponding g such that

g (H ({Ziji′j′})) = g
(
{Yij}ij , {Xij}ij , ξ

(
A, (Xij)i,j , (Cij)ij

)
, {Cij}j

)
= H

({
Zσ(ij)σ(i′j′)

})
The exchangeability follows from Lemma 1.

Assume Yij is generated by the same function f as case 1 to 3 ;

Y11 = f
(
X11, ξ11, Ỹ11, D̃

1
11, . . . , D̃

NJ−1
11 , X̃1

11, . . . , X̂
NJ−1
11 ;C11, T11

)
. . .

Yij = f
(
Xij, ξij, Ỹij, D̃

1
ij, . . . , D̃

NJ−1
ij , X̃1

ij, . . . , X̂
NJ−1
ij ;Cij, Tij

)
. . .

YIJJ = f
(
XIJJ , ξIJJ , ỸIJJ , D̃

1
IJJ

, . . . , D̃NJ−1
IJJ

, X̃1
IJJ

, . . . , X̂NJ−1
IJJ

;CIJJ , TIJJ

)
(1)

In this paper, we assume there exist one single solution because it cannot be identified if
there are several solutions.

Assumption 3. (Identification Condition) Equations (1) to solve Yij have one unique solu-
tion.
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Proposition 3. The data generating process mentioned in equations (1) satisfy exchange-
ability condition on Assumption 1-3 .

Proof. Define variable

Uij =
(
Xij, ξij, D̃

1
ij, . . . , D̃

NJ−1
ij , X̃1

ij, . . . , X̃
NJ−1
ij , {ηiji′j′}i′j′ , Cij

)
where ξij is the “position” of unit i from cluster j, and {ηiji′j′}i′j′ is the random variable
to all of other nodes except itself. The shortest paths are invariant to permutation of
adjacency matrix. (Xij, Xi′j′ , ξij, ξi′j′ , ηiji′j′)ij,i′j′ are jointly exchangeable. By Lemma 1,
the (U1, U2, . . . , UNJ

) are exchangeable. Now, construct the equations

yij = f

(
1∑

i′j′ ̸=ij ϕiji′j′(k)

∑
j ̸=i

ϕiji′j′(k)yi′j′ ;Uij

)
(2)

Given set {Uij} the equations deliver one unique solution of {yij} by assumption. Define a
new mapping H from equation (2)

(yij, Uij)ij = H
(
{Uij}ij

)
by Lemma 1, the exchangeability (yij, Uij)ij holds.

4 Conformal Causal Inference for Network Interven-

tion

The exchangeability of data (Yij, Xij,Wij, Cij) provide the foundation for the conformal
inference. Let Zij = (Xij,Wij, Cij), and Q (α;V1:n+1) denote the α-level quantile of the
empirical distribution of V such that P {Vn+1 ≤ Q (α;V1:n+1)} ≥ α. And Vij = V (Zij, y;Z)
is the conformity score where Z is the dataset.

Given the exchangeability of (Yij, Xij,Wij, Cij), we have the following theorem.

Theorem 4. (Vovk et al. [2005]; Lei et al. [2018]). Define the conformal band generated by
the first NJ data points. The conformal band at Z1,J+1,

Ĉ (Z1,J+1) = {y : V (Z1,J+1, y) ≤ Q (α;V1:NJ
∪ V (Z1,J+1, y))}

Then the Ĉ (Z1,J+1) satisfies P
{
Y1,J+1 ∈ Ĉ (Z1,J+1)

}
≥ 1− α.

In this case, we can get a similar algorithm as canonical conformal inference.
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Algorithm 1 Split Conformal Algorithm for Cluster Experiment

Input: Set level α, data (Yij, Xij,Wij, Cij) ∈ Z, testing point (x,w, c), Tij ∈ Cij denotes
the treatment status of unit i of cluster j.
Procedures
Step 1. Split Z into a training fold Ztr := (Yij, Xij,Wij, Cij)ij∈Itr and a calibration fold
Zca := (Yij, Xij,Wij, Cij)ij∈Ica
Step 2. For each ij ∈ Ica, compute the score Vij = |Yij − f̂(Xij,Wij, Cij)|
Step 3. Construct the counterfactual interval
For Tij = 1,

1. Compute η as the (1− α)-th quantile of the distribution
∑

ij∈Ica
1

|Ica|δVij
+ 1

|Ica|δ∞ for
all Tij = 1

2. Construct counterfactual interval Ĉij = [Ŷij(1)− Yij(0)− η, Ŷij(1)− Yij(0) + η]

For Tij = 0,

1. Compute η as the (1− α)-th quantile of the distribution
∑

ij∈Ica
1

|Ica|δVij
+ 1

|Ica|δ∞ for
all Tij = 0

2. Construct counterfactual interval Ĉij = [Yij(1)− Ŷij(0)− η, Yij(1)− Ŷij(0) + η]

Step 5. Given Ĉij = [ĈL
ij, Ĉ

U
ij ], use conformal inference on set of lower bound ĈL

ij and upper

bound ĈU
ij to deliver conformal inference interval ĈITE.

Output: ĈITE

4.1 Local Conformal Inference

To further improve the prediction efficiency of conformal inference, we exploit the strength
of local conformal inference.
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Algorithm 2 Split Local Conformal Algorithm for Cluster Experiment

Input: Set level α, data (Yij, Xij,Wij, Cij) ∈ Z, testing point (x,w, c), Tij ∈ Cij denotes
the treatment status of unit i of cluster j.
Procedures
Step 1. Split Z into a training fold Ztr := (Yij, Xij,Wij, Cij)ij∈Itr and a calibration fold
Zca := (Yij, Xij,Wij, Cij)ij∈Ica
Step 2. For each ij ∈ Ica, compute the score Vij = |Yij − f̂(Xij,Wij, Cij)|
Step 3. Construct the counterfactual interval for testing point (x,w, c), local weighting func-

tionH(c, Cij) for ij ∈ Ica, and the sum of weighting function Si,J+1 =
∑J

j=1

∑Ij
i=1H (c, Ci,j)+

1.
For Tij = 1,

1. Compute η as the (1−α)-th quantile of the distribution
∑

ij∈Ica
H(c,Cij)

Si,J+1
δVij

+ 1
Si,J+1

δVij
δ∞

for all Tij = 1

2. Construct counterfactual interval Ĉij = [Ŷij(1)− Yij(0)− η, Ŷij(1)− Yij(0) + η]

For Tij = 0,

1. Compute η as the (1−α)-th quantile of the distribution
∑

ij∈Ica
H(c,Cij)

Si,J+1
δVij

+ 1
Si,J+1

δVij
δ∞

for all Tij = 0

2. Construct counterfactual interval Ĉij = [Yij(1)− Ŷij(0)− η, Yij(1)− Ŷij(0) + η]

Step 5. Given Ĉij = [ĈL
ij, Ĉ

U
ij ], use conformal inference on set of lower bound ĈL

ij and upper

bound ĈU
ij to deliver conformal inference interval ĈITE.

Output: ĈITE

Assumption 4. Constant L is given. Assume in the neighborhood region of c0,

P (Cij ∈ {c : d (c0, c) ≤ ϵ}) ≥ ϵβ

L
∀ϵ ≤ k

The constant k is selected such that k ln k → 0 when NJ → ∞; and conditional conformity
score is Lipschitz continuous with respect to cluster characteristics

∣∣PV |C(v)− PV |C′(v)
∣∣ ≤

Ld (C,C ′).

Under some extra assumptions, we can prove the asymptotic efficiency of the algorithm.

Theorem 5. Under Assumption 4, the asymptomatic feature of the algorithm B

lim
NJ→∞

P
(
Yi.J+1 ∈ ĈL (Xi,J+1,Wi,J+1, Ci,J+1) | Ci,J+1

)
= 1− α

Proof. Define the sum of weight Si,J+1 =
∑J

j=1

∑Ij
i=1H (Ci,j, Ci,J+1) + 1 then the empirical

distribution of conformity score is

Fi,J+1 =

 J∑
j=1

Ij∑
i=1

H (Ci,j, Ci,J+1)

Si,J+1

δVi,j
+

1

Si,J+1

δ∞


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Given level α, Vi,J+1 ≤ Q (α;Fi,J+1), the decomposition of the probability Fi,J+1 (Vi,J+1)
for point Vi,j

J∑
j=1

Ij∑
i=1

H (Ci,j, Ci,J+1)

Si,J+1

1 (Vi,j < Vi,J+1) =
J∑

j=1

Ij∑
i=1

H (Ci,j, Ci,J+1)PVi,j |Ci,j
(Vi,J+1)

Si,J+1

+
J∑

j=1

Ij∑
i=1

H (Ci,j, Ci,J+1)
(
1 (Vi,j < Vi,J+1)− PVi,j |Ci,j

(Vi,J+1)
)

Si,J+1

< α

whenNJ → ∞, these two terms (i) For the first termR1 =
∑J

j=1

∑Ij
i=1

H(Ci,j ,Ci,J+1)
Si,J+1

PVi,j |Ci,j
(Vi,J+1),

An = [(n− 1)k, k]

Si,J+1 =
J∑

j=1

Ij∑
i=1

exp

(
−d (Ci,j, Ci,J+1)

k

)
≥ 1

e

J∑
j=1

Ij∑
i=1

1 (d (Ci,j, Ci,J+1) ∈ A1)

By Chernoff bound and assumption 4 , let X = 1
e

∑J
j=1

∑Ij
i=1 1 (d (Ci,j, Ci,J+1) ∈ A1) then

EX ≥ NJ kβ

eL

P

(
X ≤ 1

2

NJkβ

eL

)
≤ P

(
X ≤ 1

2
EX
)

≤ exp

(
−EX

8

)
≤ exp

(
−NJkβ

8eL

)
P

(
Si,J+1 ≤

1

2

NJkβ

eL

)
≤ exp

(
−NJkβ

8eL

)
Now define the “distance” ∆ (Ci,j, Ci,J+1)

∆ (Ci,j, Ci,J+1) =
J∑

j=1

Ij∑
i=1

H (Ci,j, Ci,J+1)max
v

∣∣PVi,J+1|Ci,J+1
(v)− PVi,j |Ci,j

(v)
∣∣

≤
J∑

j=1

Ij∑
i=1

exp

(
−d (Ci,j, Ci,J+1)

k

)
Ld (Ci,j, Ci,J+1)

≤ min
n0


J∑

j=1

Ij∑
i=1

n0∑
n=1

exp

(
−d (Ci,j, Ci,J+1)

k

)
eLn0k +

J∑
j=1

Ij∑
i=1

∞∑
n=n0

exp(−(n− 1))eLnk


≤ eLn0kSi,J+1 +NJeLn0k exp (−n0)

when n0 >
⌈
ln
(
1
k

)⌉
, there exist constant CG

∆(Ci,j, Ci,J+1)

Si,J+1

≤ −CGk ln k

Then R1 is bounded by∣∣∣∣∣∣R1 −
J∑

j=1

Ij∑
i=1

H (Ci,j, Ci,J+1)

Si,J+1

PVi,J+1|Ci,J+1
(Vi,J+1)

∣∣∣∣∣∣ ≤ ∆(Ci,j, Ci,J+1)

Si,J+1

≤ −CGk ln k
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(ii) For the second termR2 =
∑J

j=1

∑Ij
i=1R2ij =

∑J
j=1

∑Ij
i=1

H(Ci,j ,Ci,J+1)
(
1(Vi,j<Vi,J+1)−PVi,j |Ci,j(Vi,J+1)

)
Si,J+1

Condition on datasetD, R2 is a centered random variable, R2ij ∈
[
−H(Ci,j ,Ci,J+1)

Si,J+1
,
H(Ci,j ,Ci,J+1)

Si,J+1

]
.

By Hoeffding’s Lemma,

EVi,j

[
exp

(
s
H (Ci,j, Ci,J+1)

(
1 (Vi,j < Vi,J+1)− PVi,j |Ci,j

(Vi,J+1)
)

Si,J+1

)∣∣∣∣∣ D
]
≤ exp

(
1

2
s2
(
H (Ci,j, Ci,J+1)

Si,J+1

)2
)

E

exp
s

J∑
j=1

Ij∑
i=1

R2ij

 | D

 =
J∏

j=1

Ij∏
i=1

exp (sR2ij)

≤ exp

s2

2

J∑
j=1

Ij∑
i=1

(
H (Ci,j, Ci,J+1)

Si,J+1

)2
 ≤ exp

(
s2

2

Si,J+1

S2
i,J+1

)

SoR2 ∼ subG
(

1
Si,J+1

)
, then P (R2 > t) ≤ exp

(
− t2

2
Si,J+1

)
. Let t =

(
lnn

Si,J+1

) 1
2
, P

(
R2 >

(
lnn

Si,J+1

) 1
2

)
≤

exp
(
−1

2
lnn
)

Now set G =

{
R2 ≤

(
lnn

Si,J+1

) 1
2
, Si,J+1 >

1
2
NJkβ

eL

}
, then

R1 ∈
[
PVi,J+1|Ci,J+1

(Vi,J+1)− CGk ln k, PVi,J+1|Ci,J+1
(Vi,J+1) + CGk ln k

]
The upper bound

P (R1 +R2 < α | Ci,J+1) ≤ P
(
PVi,J+1|Ci,J+1

(Vi,J+1) +R2 < α+ CGk ln k | Ci,J+1

)
≤ P

(
PVi,J+1|Ci,J+1

(Vi,J+1) < α+ CGk ln k | Ci,J+1

)
If V | C is continuous, PVi,J+1|Ci,J+1

(Vi,J+1) ∼ U [0, 1], P (R1 +R2 < α | Ci,J+1) ≤ α +
CGk ln k → α
Similarly, the lower bound

P (R1 +R2 < α | Ci,J+1) ≥ P
(
PVi,J+1|Ci,J+1

(Vi,J+1) +R2 < α− CGk ln k | Ci,J+1

)
≥ P

(
PVi,J+1|Ci,J+1

(Vi,J+1) < α− CGk ln k −
(

lnn

Si,J+1

) 1
2

∣∣∣∣∣ Ci,J+1

)
P (R1 +R2 < α | Ci,J+1)

≥ α− CGk ln k −
(

lnn

Si,J+1

) 1
2

→ α

5 Application

We conducted a field experiment (N = 880 physicians) to validate our method. In the ex-
periment, we use a psychological interventions aimed at improving communication between
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Figure 1: Comparison Results of Simulation Experiments

(a) Coverage Rate (b) Length of Interval

Figure 2: Comparison Results of Experiment

nurses and doctors, thereby strengthening social networks, and consequently reducing medi-
cal errors and burnout.” Our method overcame the misspecification problem due to network
effects. Therefore, it generalized the treatment effect on burnout and medical errors to other
global health settings.
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Figure 3: A Social Network from a Healthcare Field Experiment
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